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LEWER TO THE EDITOR 

On l/f power spectra 
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t Physique des solides, 5%. 510, Univenit6 Paris-Sud, 91400 Onay, France 

Received 7 February 1994 

Abstract. Several work have recently reponed I/f noise in the number of pnrticles in some 
physical systems where white noise is imposed on the boundary. We show thaf these results 
should not hold in general because they were not derived with a correct definition of the power 
spectrum. 

I/f noise in condensed matter has been considered a puzzling phenomenon by physicists 
for many years. For a review, see e.g. [3] and [15]. There has recently been an upsurge 
of interest in this phenomenon after the suggestion by Bak, Tang and Wiesenfeld [l] (BTw) 
that self-organized criticality might constitute a rather general explanation to the ubiquity 
of fractal structures in space and time, since l/f noise implies temporal self-similarity. 
Self-organized criticality is the property of some dissipative many-body systems to evolve 
naturally towards a metastable, statistically stationary state where events take place at 
all length and time scales, resulting in fractal structures and I/f power spectra. The 
paradigmatic example proposed by 61%’ was a sandpile, which was later shown to exhibit 
l/fz noise and not l/f noise as originally claimed [&lo]. In the spirit of self-organized 
criticality, Jensen [6,7] suggested that a simple, linear diffusion equation could exhibit a 
I/f spectrum in the number of particles present in the system, if it were provided with a 
boundary noise term instead of the usual bulk noise term. Grinstein et ai [5] later showed 
that most nonlinearities consistent with the symmetries of the system are irrelevant to the 
power spectrum. They considered a D-dimensional system in which particles are injected 
stochastically at a boundary, move into the medium and are removed at the other end. They 
studied the evolution of the density of particles N ( x ,  t )  at location x at timet, and proposed 
the following stochastic equation: 

where J ( N )  is the current associated with the local conservation of particles and JO is the 
rate at which particles are injected at 211 = 0, where X I ,  denotes the direction parallel to 
the current (XI will denote the perpendicular hyperplane). The total number of particles 
in the system is N ( t )  = f i (q  = 0, t ) ,  where f i (q ,  t )  is the spatial Fourier transform of 
N ( x ,  t). The form of the flow on the entering edge must prevent the density from gowing 
without bounds (in an infinite system), which is crucial, since one would otherwise trivially 
get I/f noise, the well known result for the Wiener process. If J ( x ,  t) is first taken in the 
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simple mean-field form -Dgrad N ( x ,  t ) ,  then a short analysis shows that one apparently 
gets a l/f form for (lfi(f)l'), where k(f) is the Fourier transform of the total number 
of particles N ( t )  and angular brackets denote averagc on many rediations of the process. 
Grinstein et a1 then proved that nonlinear parts of J ,  neglected in the mean field analysis, 
do not affect the form of (Ifi(f)l'). But we argue here that (lfi(f)[*) LX I/f does not 
imply that the power specmm of N ( t )  is l/f. In effect, the power spectrum of a time series, 
be it &terministic or stochastic, is not in general the average square modulus of its Fourier 
transform. 

In particular, in the process of proving that one should prevent the density from growing 
without bounds in order to get a non-trivial power spechum in the number of particles, 
the authors of [5 ]  though they eventually reached the correct result, used an incorrect 
argument. In effect, they took L = 00 (where L is the size of the system in the XI, 

direction), and J&l,  t )  = q ( x ~ , t ) ,  where the correlations of the noise term are given by 
 XI, t)q(x;, t')) = 2 r S ( x ~  -x;)S(t  - t'). They then argued that the equation of motion 
for the number of particles being 

aN - = q ( k i  = 0. t )  
at 

(where k~ denotes the wavevector associated with XI) it follows that the Fourier transform 
of N is given by f i ( f )  0: fi(k1 = 0, f)/if, and thus that its fluctuations are given by 

yielding the famous l/f2 specinun of the Wiener process. They implicitly assumed that 
( l i j (k l  = 0, f)l*) is a constant, but this does not seem to us to be true: if 

which is not a well-defined distribution. Therefore, the l/f2 result for the Wiener process 
cannot be derived from the average square modulus of its Fourier transform. This is 
a consequence of the more general remark that the power spectrum of a signal is not 
given by the average sqwrre modulus of its Fourier transform. This can be seen from a 
comparison between the two following definitions which are obviously incompatible (when 
the expressions exist): 
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Expression ( 6 4  gives the average square modulus of the Fourier aansform of a signal N, 
while expression (6b) is one among several possible equivalent definitions of the power 
spectrum of N .  When both expressions exist. there may be a relationship between them, 
but no such general relationship can be defined a priori. 

Along the Same lines, the authors of 1121 arrived at the correct result relying on the 
same type of mistake in proving that the BIW sandpile [l] exhibits l/f2 noise in the total 
number of particles in the system: they argued that the fluctuations h ( x ,  t) of the height of 
the sandpile could be described by 

where j is the current of particles and q is a non-conserving noise with correlations given 
by equation (4a). Integrating equation (7) over space yields an equation similar to equation 
(2): a N / a t  = q(k = 0, t )  because the current vanishes at the border. They conclude that 
the power specbum of N is l / f2  (which is correct), because 

(which we argued to be false). Thus, although expression (26) in [12] is false, the correct 
solution was eventually reached because common wisdom holds that the Wiener process 
trivially yields a l / f z  power spectrum. We shall briefly rederive this result in the next 
section. 

To see how all this affects the results of [4-71, we first briefly recall a few facts about 
the power specburn of a process, and then turn to the simple model proposed by Jensen [7]. 

The power spectrum of a second-order stationary process X(t, p) (with p a realization 
of the process), i.e. having constant expectation ( X ( t ) )  = E, and an autocorrelation function 
CX&, t + r )  = ( X ( t ) X ( t  + r ) }  depending only on time difference 5, can be defined as the 
Fourier transform of its autocorrelation function, when it exists [2,14]: 

im 
S,(f) = 1 Cxx(r)e’x’r d r  ’ 

-m 

where Cxx(r)  is the autocorrelation of X(t): 

C.&) = ( X ( W ( t  + 5)). (9) 

The Wiener-Khinchin theorem relates this definition to the periodogram &(f) of the 
truncated signal 

Making the average over all possible realizations /I and then taking the limit when T 
one gets: 

00, 

s.z(f) (PT(f)). (11) 
T-rW 
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This theorem is valid if 

Condition (12) is almost always satisfied in practice, but most physicists prefer to use the 
definition involving the autocorrelation function. For instance, it is easy to show that the 
autocorrelation function of a Langevin process is of the form C,,(r) = e-"lrl (obviously 
obeying (12)). where I /a  is a (positive) characteristic time, so that the resulting power 
spectrum is the Lorentzian form 

A lot of 'explanations' of l/f noise in condensed matter rely on the idea that superposed 
Lorentzian spectra with an appropriate weighting function can generate I/f noise 13,151. 
By l/f noise, one usually refers to signals exhibiting a power spectrum of the form I/f", 
with 0 < a < 2. Because experimental signals are usually of finite length, there is a cutoff at 
small frequencies preventing infrared divergence for a 2 1, and because such signals are of 
finite resolution, there is also a cutoff at high frequencies, preventing ultraviolet divergence 
for a < 1 .  While signals having a < 1 are stationary, signals with a > 1 are generally 
non-stationary, the case a = 1 usually being considered as the boundary between stationary 
and non-stationary signals [16], though the issue remains somewhat controversial. For non- 
stationary signals, equation ( 1  1 )  should be the relevant definition of the power spectrum. 
The power spectrum, however, is not very informative for such signals. and the analysis 
should be made within the context of timefrequency methods. Anyway, if one takes, for 
instance, a Wiener process, considered as the integral of a white noise process Y O ) ,  one 
finds, using expression ( 1  1): 

2 -- 
- f Z  

which is the correct result. sometimes convenient to use. One must remember that theoretical 
Brownian motion is not physical (white noise has infinite energy, and 'practical' white 
noise is slightly coloured). For non-stationary processes. the power specmm can also be 
defined in principle with the help of the autocorrelation function assuming that integral and 
expectation signs can be switched: 
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where C,, now has two arguments since X is no longer stationary. For instance, 
remembering that for the Wiener process, which is one of the best-known examples of 
a non-stationary process, Crx(s,t) = min(s,r), one finds that &(f) o( l/fz, with a 
multiplicative constant K. The strict application of (15) leads to K diverging, but for 
any practical purpose, with data of finite length and resolution, the integral over T has finite 
bounds. Expression (15) applies well to, and is most often used for, cyclostationq signals, 
where the autocorrelation function is periodic. 

The usual diffusion equation assumes that particles are subjected to random encounters 
with other particles, the effects of which can be modelled by a white noise term in the 
bulk. The resulting motion is an unbounded Brownian motion (the Wiener process) and 
thus results in a l/f2 power spectrum. Jensen [7] proposed that the very same diffusion 
equation for N(r, t) the particle density 

-= aN(r’t) yVZN(r,t) 
at 

with white noise boundary conditions for N(r,t) would yield a Iff spectrum in any 
dimension for the total number of particles N(t) = J N(r ,  t) dDr, where D is the spatial 
dimension. His proof can be sketched as follows: if P(r,  t )  = B(r, t) for r belonging to 
the boundary S, the solution for P(r, t )  is given by 

N(r, t )  = -- dto dSoNro, to)VoG(r, ro I t .  to) (17) 4n ‘ S  s 
where G is the Green function solution of the equation 

(18) 
aG - - yVZG = 4rr8(r - r&(t - to)  
at 

with G(r, ro I t ,  to) = 0 for ro belonging to S. If the domain is sufficiently large, the Green 
function can be approximated by G(r, t )  = (4ny)i-D~zt-D~ze-r2~4r‘O(t) ,  so that 

/dDrVG(r,t) = t-’/’.  (19) 

Expression (19) is in fact valid only when the number of particles is determined in the 
vicinity of the boundary, as was already the case in a l/f (transient-diffusion) model 
described in [ll]. In this case, for a large domain, one has 

where fi(f) is the Fourier transform of N(t), and f i (q ,  f )  is the Fourier transform in space 
and time of N(r, t). The product of the two terms in expression (20) comes from the fact 
that N(q = 0, t) is the approximate convolution of hyo terms, so that the Fourier bansform 
yields a simple product. Now, as we argued in the introduction, the expression 

is not well defined if one assumes that the boundary factor in (20) is a white noise term: 
Ifi(q = 0, f ) l z  does not exist. Moreover, expression (21) simply does not define the power 
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spectrum of the process. The power spectrum is, assuming that N ( t )  is zero for t c 0, 
defined by 

which is clearly different. In the particular case studied here, although expression (21) 
is not correct, one effectively gets a l/f noise. In effect, let us assume that N ( t )  is the 
(approximate for a large but finite system) convolution of two functions h and g: N = h *g 
(h being, for instance, the white noise term). 

CT-1' where C is a constant, because {limT,+m(l/T)(I I-,-,, duez'"f"h(u)121)) is precisely 
the (constant) power spectrum of the white noise term, not to be confused with 
( I J z d u e ~ f " h ( u ) l z )  which is not defined. Since here g( t )  cx t - ' l2 (given by expression 
(19)). the power spectrum is given by S d f )  it: C(lJ_+,"dr'e""ff'g(t')12) 0: l/f. Thus the 
l/f result holds despite the incorrectness of its derivation in [7]. 

It is more difficult to evaluate the consequences of the incorrect definition on the model 
studied in [SI. The conclusion to be drawn is that nothing can be said analytically about 
the power spectrum of the signal generated by the number of particles in the system using 
the same approach as the authors of [SI. In effect, their result comes from the approximate 
equality 

which is supposed to imply 

But even if one replaces ([fi(k = 0, f ) l z )  with the right definition of the power spectrum, 
since expressions (24) and (U) are not well-defined, it is difficult to derive anything about 
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the true power spectrum. In particular, their claim that this model generates a l/f noise 
requires more investigation. 

We now consider numerical estimates. The formula shown explicitly in [4] to calculate 
the power spectrum still contains the same mistake. In effect, the approximate numerical 
power spectrum of the discrete time series generated by the total number of particles N ( t )  
in the system should be given by 

where the 1/T term is not only a numerical factor: considering it as a simple numerical 
factor leads to it being neglected [4] and to defining the power spectrum as the square 
modulus of the Fourier transform of the signal, which, once again, it is not. This problem 
can be seen by rescaling formula (26): 

so that the smaller the frequency, the more points are used to calculate the corresponding 
power. It can be seen from equation (11) that S(f) is an estimator of P(f), and more 
precisely that &(f) is the power specmm of the known part X&) of the signal in the 
interval [-T, +TI. The inverse Wiener-Khinchin theorem implies that &(f) is the Fourier 
transform of an associated autocorrelation function CTx(r) which is itself an estimator of 
C,, : C L ( r )  converges to Cxx(r)  for any r ,  but the convergence is not uniform, and the 
variance of C:,(r) is small for small r only, while it increases as IrI + 3". 

In conclusion, one should remember that the power spectrum of a signal is not in 
general given by the average square-modulus of the Fourier wansform of the signal. We 
have found that the confusion of both quantities is present in many papers during the last few 
years. Such confusion does not always lead to errors in the results, because the preferred 
definition of the power spectrum seems most often to be the one involving the autocorrelation 
function of the signal. Yet, as noticed in [12], it is easier, and more appropriate for non- 
stationary signals, to compute the power spectrum from the periodogram as in equations 
(lo), (11) (as we argued in the previous section it is also a more dangerous method, from 
the numerical point of view). Moreover, stationarity is too often assumed when computing 
the power spectrum from the autocorrelation function: although expression (15) constitutes 
an alternative way of defining the spectral density in non-stationary cases, it is not always 
applicable, and equations (10) and (1 1) remain safer. Finally, let us point out that our letter 
does not question the results of [8-101 which prove that the power spectrum of the number 
of particles in the BTW sandpile is a l/f2 spectrum, because the calculations performed in 
these papers rely on the autocorrelation function. 

We would like to thank the referee of this paper for pointing out 1111 to us and Olivier 
Bernier for mathematical help. 
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